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ABSTRACT

The synthesis of 13, an advanced intermediate in the Nicolaou synthesis of platensimycin 1, was made from 9 by autoxidation to give 10,
which was stereoselectively reduced providing 12. Finally, dehydration of 12 by heating in DMSO resulted in 13.

The structure1 and broad spectrum antimicrobial activity2

of platensimycin 1 has rapidly attracted considerable attention
from the organic synthesis community.3 The retrosynthesis
for 1 involves the cross-conjugated 2,5-cyclohexadieneone
2 formed from the intramolecular carbenoid insertion of 3,
Figure 1.4 The acid 4 is available in both R- and S-
enantiomeric enriched forms from the microbial reduction

of the corresponding 1-tetralone-2-carboxyethyl esters fol-
lowed by hydrogenolysis of the benzylic hydroxyl group.5

The recent reports by Mulzer3i,t and Corey3j concerning
the conversion of 2 into 6, and 5 into 6 respectively, and the
subsequent reduction of 6 and dehydrogenation to give 7 as
a mixture of stereoisomers at C-9 (40:1, Mulzer), a pivotal
intermediate in the Nicolaou synthesis of both (()-13a and
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Figure 1. Retrosynthetic analysis of platensimycin 1.
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(-)-1,3b Scheme 1, prompted this report. In this letter we
describe the use of 2 as a key intermediate in the formal
total synthesis of platensimycin 1 that avoids the above
strategy and leads to 13 (Scheme 3) in a completely
stereoselective sequence.

We have explored an alkylation and autoxidation strategy
as depicted in Scheme 2. The final product 10 only requires
a hydroxyl directed stereospecific conjugated reduction of
the tetrasubstituted dienone double bond, followed by
formation of the tetrahydrofuran ring to complete a formal
synthesis of platensimycin.3a,b

Treatment of 2 with MeMgCl (3.0 equiv) in THF at -78
°C resulted in the complete consumption of 2 and the

formation of 8 (63%).3i Whereas, treatment of 2 with MeLi
(excess) in THF at -78 °C also gave 8 (ca. 30%) along with
recovered 2. Quenching the above reaction at -78 °C with
D2O resulted in the incorporation of one deuterium atom R-
to the cyclopentanone carbonyl group in recovered 2, thus
indicating, as suspected, that enolization of 2 by MeLi is
the deleterious pathway that drastically reduces the yield of
8.

Treatment of 8 with t-BuOK/t-BuOH/MeI gave 9 (61%),
with no detectable amounts of any geminal dimethylation
product. It was found that exposure of 9 to O2 and n-Bu4NBr/
KOH/H2O/t-BuOH6,7 gave 10 (65%) as a single stereoisomer
whose structure was established by single X-ray crystal-
lography, Figure 2. When the autoxidation process was

conducted at -78 °C in the presence of P(OMe)3, the
R-hydroxyenone 11 (8%) was also isolated. It appears likely
that 10 arises from 11a by rearrangement of the intermediate
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Scheme 1. Mulzer’s and Corey’s Route To form 6 and 7a

a Reaction conditions: (a) MeMgI, THF, -78 °C, 4 h (71% brsm); (b)
NBS, (BzO)2, CCl4, reflux (75%); (c) NaOMe, THF, 0 °C (80%); (d)
n-Bu4NF, THF, 130 °C (88%); (e) Mulzer’s conditions: (i) cat. Ir-cat 1,3t

H2, 84%; (ii) HIO3·DMSO, DMSO, cyclohexene (60%), 1.3:1 epimers at
C-9 (major isomer shown); (f) Corey’s conditions: (i) [Rh(cod)2]BF4,(R,R)-
DIOP, H2 600 psi (72%); (ii) TMSOTf, Me3N, followed by IBX, MPO,
DMSO (80%) (small amount of C-9 epimer).

Scheme 2. C-4 Alkylation and C-10 Autoxidation

Figure 2. ORTEP of 10.
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allylic hydroperoxide.8 The stereochemistry of the newly
introduced C-10 sec-hydroxyl group is the correct relative
configuration.

Next, the possibility of selective reduction of the tetra-
substituted dienone double bond in 10 by conjugate hydride
reduction directed from the C-10 hydroxyl group was
examined. Eventually, it was found that treatment of 10 with
LiAlH2(OEt)2 in THF at -78 °C cleanly gave 12 (64%) and
recovered starting material (30%), Scheme 3. The desired

stereochemistry at C-9 was confirmed by X-ray crystal-
lography (Figure 3).

Despite the fact that 12 would appear to be readily
converted into 13 by reported procedures,3a-c treatment of
12 with trifluoroacetic acid in CH2Cl2 gave small amounts

of 13 and, interestingly, Epi-12. Since the ring cleavage of
tetrahydrofurans with electrophilic reagents is well-known9

and forms the basis of the synthesis, for example, of
4-chlorobutanol from THF, it is somewhat surprising that
12/13 would be stable to strongly electrophilic reagents.

In consequence, we treated the 1,3-diol 12 with dimeth-
ylsulfoxide10 (as solvent, relatively neutral reaction condi-
tions) under microwave conditions and obtained 13 in good
yield.

The sequence of reactions from the known ketone 2 to 13
proceeds in five steps in an overall yield of 10% and is
completely stereoselective.
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Scheme 3. Hydroxyl Directed Conjugate Reduction

Figure 3. ORTEP of 12.
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